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Abstract: The problem of output tracing for nonlinear, non-minimum phase systemswill be surveyed in this 

article. A cascade form control structure will be presented, for the desirable output tracing during the 

stabilization of inner dynamics in a limited time that conjugates the first and second times of sliding mode 

methods together.This method is converged under the complete asymptotically feedback.Comparing to the other 

methods, this method main efficiency is that sliding mode dynamics of output tracing error variable has a lower 

rank and its adjustment is simpler consequently therefore the transient response variables have better 

properties. Theoric analysis and simulation results reveal the suggested method effictivness. 
Keywords: output tracing, nonlinear non-minimum systems, sliding mode. 
 

I. Introduction 
In this study the lateral output detection problem will be studied for a category of undefined nonlinear 

systems that the output reference defined by an undefined nonlinear outer system with polynomial defined 

indicator. The suggested method improves the causality but it has the theoretical nature. Many efforts have been 

applied to address many of the issues mentioned above.(Cavallo and Natale,2014)Several control techniques 

have beenproposed for the noncausal case where the tracking referenceprofile is assumed to be known 

beforehand. An approximatesolution for a special class of systems and trajectories isproposed in. Exact tracking 

of a known trajectory givenby a noncausal system is achieved via a stable nonlinearinverse in.(Laghroucheet 

al,2014)In the authors address the problem ofasymptotic output tracking for a class of nonlinear 

uncertainsystems, where the output reference profiles are definedby an unknown linear exosystem with known 

characteristicpolynomial. The proposed method improves the causalitywith respect to the existing state of art, 

but the assumptionthat the characteristic polynomial of the exogenous systemis known makes its impact of 

mainly theoretical nature. Anextension to the result of has been proposed in,where the exogenous system, 

responsible for generating the output reference profile, is assumed to be unknown, but ofgiven order, and its 

characteristic polynomial is identified on-line via a higher-order sliding mode (HOSM) parameter observer and 

it is used for generating the referenceprofile for the internal state. A restriction of the method proposed in is the 

assumption of internal state availability that was later overcome in by designing a suitableobserver. In, internal 

state observation was tackled by including the presence of unknown inputs.(zare and kofigar,2015) 

The lots of attempts have been done, solving the aforementioned problems. Some control methods 

were suggested for the nonobvious cases, assumed that the detection reference is determined in advance.)Gao 

and chen, 2007) An approximated solution is suggested for an especial class of systems and movement 

trajectories. 

In this study a novel double loop cascade like control sketch is presented, combining the first and 

second order SMC methods. The ESSC method will be used for the calculation of inner unstable dynamics 

limited solution. The suggested solution protects the convergence and stability of current methods while it also 

makes the limited convergence time possible for the inner dynamic situations, caused high 

optimization.(Karamimolaei et al,2009) Moreover an undefined high frequency control matrix is considered in 

present study whereas in previous studies it was assumed that the matrix is completely defined. 

 

Problem Formulation 
y = Gp(s)[u + de(y, t)] ,  

where u is the control input, y is the output, de(y, t) is amatched input disturbance and Gp(s) = 

kp(Np(s)/Dp(s)),with Np(s) and Dp(s) being monic polynomials of degreem and n, respectively. The following 

assumptions are made: 

(A1) Gp(s) is minimum phase, strictly proper and its parametersare unknown but belong to a known compact set. 

(A2)The degree n of Dp(s) is a known constant. (A3) Gp(s) has 
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known relative degree n*:= n−m. The above Assumptions(A1)–(A3) are usual in adaptive control [15]. Consider 

thefollowing additional assumptions: 

 

(A4) The sign of the high frequency gain kp≠ 0 isunknown.(A5) The disturbance de(y, t) is locally Lipschitz in 

y,∀y, and piecewise continuous in t,∀𝑡.(A6) The nonlinear disturbance de(y, t) satisfies 

|de(y, t)| ≤ ¯ de(y, t),∀(𝑦, 𝑡) 

 
imposed on de, e.g., de(y, t)=y

2
. Since finite-time escape isnot precluded, a priori, [0, tM) is defined as the 

maximumtime interval of definition of a given solution, where tMmay 

be finite or infinite. 

Reference Model: the reference model is given by 

 

ym= M(s)r = (km/Dm(s))r , km> 0 , (2)  

 

where the reference signal r(t) is assumed piecewise continuousand uniformly bounded, Dmis a monic 

polynomialof degree n*. 

 

Control Objective: the control objective is to achieveglobal or semi-global stability and convergence of the 

errorstate with respect to the origin of the error space. Inparticular, the tracking error 

 

e0(t) = y(t) − ym(t) (3)  

 

should asymptotically tend to zero, i.e., exact tracking isrequired.(Cavallo and Natale,2014) 

 

II. Inner loop designing 

In the inner loop designing it is assumed that an undefined outer loop gives a vector signal as
(n r)(t) Rv  , that 

its time derivative has an upper bound depends on state and time. 

Considering the usual model reference adaptive control(MRAC) approach, the output error e0satisfy (Hsu et 

al,1994) 

 

e0= k*M(s)[u – u*] , (4)  

 

where k* = kp/km, 

 

u* := θ*
T
ω −Wd(s) * de, (     5 )  

 

 
The signal u*will be regarded as a matched inputdisturbance, thus an upper bound will be required. SinceWdis a 

proper stable transfer function and de 

satisfies Assumption (A6), then applying (costa and cunha,2003)  to the convolution Wd(s) *de(y, t) , one can 

find positiveconstants cd, γdsuch that |Wd(s) *de(y, t)| ≤ ˆ de(t), whereˆ de is defined by 

 
 
de(t) := ¯ de(y, t) + cde−

γdt
*¯ de(y, t) . (6) 

 

Thus, from (5), u*satisfies 

 

|u*(t)| ≤ 
¯
θ

T
|ω(t)| + ˆ de(t) , t € [0, tM) .                                                          (7) 

 

Consider the case of relative degree one, unknownsgn(kp), and nonlinear disturbances. This section will 

generalizethe results of (yan et al,2003) developed for linear plants. 

The control law is defined by 

 

u =[u
+
= −f(t) sgn(e0)], t€T

+
,                                                         (8) 

u
−
= f(t) sgn(e0) , t€T

−
, 

 

where an appropriate monitoring function of the trackingerror e0is used to decide when u would be 

switchedfrom u
+
to u

−
and vice versa, allowing the detection anywrong estimate of sgn(kp). The sets T

+
and 

T
−
satisfyT

+
UT

−
= [0, tM) and T

+
∩ T

−
= 0, and as will beshown in the following analysis, both T

+
and T

−
have 
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theform [tk, tk+1) U · · · U[tj, tj+1). Here, tkor tjdenotes theswitching time for u and will be defined later. We 

refer tosuch switchings as control sign switchings. 

According to (4), the modulation function f(t) should bea norm bound of u*. From (7), one possible choice is 

 

f(t) = 
¯
θ

T
|ω(t)| + ˆ de(t) + δ , (9) 

 

where δ is an arbitrary nonnegative constant. Consider forsimplicity M(s) = km/(s + am) (am, km> 0). Then 

forsgn(kp) known, one chooses the control u
+
or u

−
, accordingto kp> 0 or kp< 0, respectively. Now, e0satisfiese 

 

ε˙0(t) = −amε0(t) + kp[u(t) –u*(t)] + π(t)                                                         (10) 

 

where π(t) denotes a transient term due to initial conditionsof the observable but not controllable subsystem of 

thenonminimal realization (Ac, bc, h
T

c) of M(s) in (4), used 

in MRAC theory [15]. Now, noting that sgn(u − u*) =−sgn(e0), if the correct control direction is used and f(t) 

>|u*|, then by using the Comparison Theorem [13], |e0| is 

bounded by the solution of the following differential equation 

 

ξ˙(t) = −amξ(t) + π(t), ∀t €[t
¯

0, tM), ξ(t¯0) = e0(t¯0) (11) 

 

i.e., ∀t ≥ [¯t0, tM), one has 

|e0(t)| ≤ |ξ(t)| ≤ e
−a

m
(t−.t

0
)
|e0(¯t0)| + c0e

−δt
, (12) 

where ¯t0denotes some initial time. 

 

Based on (12), consider the auxiliary function ϕkdefined 

as follows: 

ϕk(t) = e
−a

m
(t−t

k
)
|e0(tk)| + (k + 1)e

–tk+1
 , (13) 

t€[tk, tM), t0:= 0, (k = 0, 1, . . .) . 

 

The monitoring function ϕmcan be defined as 

ϕm(t) := ϕk(t) , ∀t €[tk, tk+1)(€[0, tM))                                                                (14) 

 

The motivation behind the introduction of ϕmis that π isnot available for measurement. Reminding that the 

inequality(12) holds if the sgn(kp) is correctly estimated, it seemsnatural to use ξ as a benchmark to decide 

whether a switchingof u is needed. However, since π is not available, one has touseϕmto replace ξ and invoke the 

switching of ϕm. Note that from (14), one always has |e0(tk)| <ϕk(tk) at t = tk. 

Hence, the switching time tkfor u from u
−
to u

+
(or u

+
to u

−
) is well-defined (for k ≥ 0): 

 

tk+1=[min{t >tk: |e0(t)| = ϕk(t)},if it exists (15) 

,tM, otherwise 

 

2.1. Main Result for n*= 1 

Theorem 1: Assume that (A1)–(A6) hold. Consider thesystem defined by (1), (2) and (8) and the 

modulationfunction given in (9). Then, the control sign switchings,driven by the monitoring function (14), will 

stop after afinite number of switchings and both the tracking error e0and the complete state Xewill converge to 

zero at leastexponentially. 

 

Proof: We only sketch the proof, which is divided inthree parts. First it is proved that the switching stops aftera 

finite number of switchings (avoiding finite-time escape), 

since for some finite k*the term (k*+ 1)e
−t/(k*+1)

of(13) will allow ϕk(t) to be an upper bound valid for ξ, in(12), 

consequently no switching will occur after that. Secondif the control direction is correctly estimated or not, 

sinceϕkconverges to zero exponentially e0(t) will also convergeto zero, at least exponentially, avoiding finite-

time escape.Finally, the convergence of the complete error state Xecanbe shown by using the regular form for 

the state spacerealization of (4). 
 

Corollary 1: In Theorem 1, the control sign switchingstops at a correct sign corresponding to the unknown sign 

ofthe control direction of the plant, i.e., for t>tk*, u = u
+
, 

ifkp> 0 and u = u
−
, otherwise. 
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Proof: The proof is based on a reverse dynamics argument.We know that if the sign is correct all trajectories 

ofthe system converge to the origin of the error state space. 

Reverse Dynamics Argument: Assume that the finalcontrol sign is incorrect. Then, if we reverse the time, i.e.,t 

→ 
−
t, the resulting equations have the same stabilityproperties as those obtained with the right control sign 

andthus all trajectories from any initial condition would convergeto the origin, i.e., the origin would be a global 

sink in reversetime. Thus, in forward time, all trajectories not at the originwould diverge unboundedly. This is a 

contradiction, sinceby Theorem 1 the state converges to the origin. Thus, the ultimate control sign must be 

correct 

 

III. Outer loop designing 

Consider the internal dynamics bounded to manifold 0  . The main idea for generalizing the previous case 

consistsin reducing the problem to the n*=1 case by the introduction 

of the operator 

L(s) = sN+aN−1sN−1 +. . .+a0, N:= n*−1 , (16) 

 

such that GpL(s) be of relative degree one (or, equivalently,almost strictly positive real –ASPR) and ML(s) be 

SPR(or ASPR). However, L(s) is non-causal and what can beactually implemented is an approximate realization 

of thisoperator. One approximation is L given by the linear leadfilter 

L(s) = L(s)/F(τs), F(τs) = (τs + 1)
N
and τ > 0 ,(17) 

 

As will be shown, this approximation leads to global/semiglobalstability with respect a residual set of order O(τ ). 

However, it is well known that such filters usually lead tocontrol chattering and nonzero residual tracking error 

due tothe phase lag introduced the time constant (τ ). Alternatively, 

L(s) can be implemented by using the Levant’s robust exactdifferentiators (RED) (Levant,2003)which potentially 

allows the exactestimate of the e0derivatives. The problem is that suchdifferentiators are valid only locally and 

may lead to unstablebehavior with larger initial conditions(Nunes,2004). 

In the proposed control strategy, see Figure 1, L(s) isreplaced by a hybrid lead filter, named Global Robust 

ExactDifferentiator (GRED). In Fig. 1, α represents a switchinglaw. It is then possible to obtain a exact 

compensationof the relative degree while assuring global or semi-globalstability properties of the closed loop 

system. The controlsign is adjusted according to the monitoring function ϕm, asindicated in Fig. 1. 

 

The control u is defined as in (8), replacing e0by ˜ε0:=α¯ε0+ (1 − α)ε0(see Fig. 1), i.e., 

u =[u
+
= −f(t) sgn(˜ε0) , t∈T

+
, 

u
−
= f(t) sgn(˜ε0) , t∈T

−
,(18) 

 

The strategy for switching the control direction, accordingto a new monitoring function ϕm, will be redefined 

later on. 

 

 
Fig1. Suggested Cascade-like controlling structure 
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IV. Auxiliary Errors for Analysis and Design 
As explained above, assume that only the linear lead filteris active, i.e., ˜ε0= ε0. Then, from Figure 1, one has 

 

 (19) 

ε0=,
𝐿(𝑠)

𝐹(τs)
e0 

 

which can be rewritten as 

 

ε0= k*ML[u –u*] + βU+ e
0

F, ∀t ∈[0, tM) (20) 

 

where 

 

βU:= k*ML(s) [1 − F(τs)] F
−1

(τs) *(u –u*) and (21) 

 

 

|e0
F
|≤ R1e

−λct
+ R2/τ

Ne–t/τ
 ≤ Rae

−λa(t−te(τ))
. (22) 

 

 

The positive constants R1,R2,RaandType equation here.λcare independentof τ > 0; λcis lower than the stability 

margin of Acand0<λa<min(λc, 1/
¯
τ ), with 

¯
τ >τ. 

The first inequality in (22) holds ∀t ≥ 0, while the lastone holds only ∀t ≥ tewhere teis the peak extinctiontime, 

i.e., the smallest time value at which the inequality 

R
2
/τ

N e−t/τ
≤ R2, ∀t ≥ te(τ ), ∀R2is satisfied for a fixed valueof the parameter τ ∈(0, 1). 

The constants R1 and R2are linear combination of theinitial conditions Xe(0) and xf(0), where xfis the state 

vectorof the realization (Af /τ , Bf /τ , Cf /τ
N
 , 1 /τ

N
 ) with (Af,Bf, Cf, 1) 

being the canonical controllable realization of L/F in (19). 

By using this realization, peaking appears only in the outputε0while the state xfis peaking free. 

 

4.1.An Upper Bound for te(peak extinction time): 

It canbe easily concluded that te(τ ) is uniformly bounded by aclass-K function of τ . Moreover, there exist 
¯
te(τ ) 

€ K such that 

 

te(τ ) ≤ 
¯
te(τ ) , (23) 

 

which can be obtained from the known upper bounds of theplant parameters.Considering the error system (4), 

(19), the following statevector z is used 

 

z
T
:= [X

T
e, xf], z €IR

3n−2+N
(24) 

 

The following inequality is a consequence of the continuityof the Filippov solutions and the particular state 

realizationassociated with xf: 

 

|z(t)| ≤ kz0|z(0)| + V(τ ) , 

∀t€ [0, te(τ )] ∁ [0, tM), ∀τ € (0, τ1]; 0 < τ1≤ 1; V € K                             (25) 

and kz0> 0 is a constant. 

 

4.2.Monitoring Function (n*> 1) 

The following lemma provides an upper bound for |ε0|,valid if sgn(kp) is known and t €[
¯
te, tM), from which 

thenew monitoring function will be defined. 

Lemma 1: Consider the I/O relationship 

ε(t) = 
¯
M (s)[u + d(t)] + π(t) + β(t) , (26) 

 

and any arbitrary initial time 
¯
t0≥ 0, where 

¯
M (s) =

¯
k/(s + 

¯
α) (

¯
k, 

¯
α > 0), d(t) is LI, β(t) and π(t) areabsolutely 

continuous, ∀t €[
¯
t0, tM). Assume that |π(t)| ≤Re

−λ(t−.t0)
, ∀t €[

¯
t0, tM), where R, λ are positive constants.If u = −f(t) 

sgn(ε), where the modulation function f(t) isLI and satisfies f(t) ≥ |d(t)|, ∀t €[
¯
t0, tM), then the signal

¯
e(t) := ε(t) − 

β(t) − π(t) is bounded by (for any arbitrarytisuch that 
¯
t0≤ ti<tMand 

¯
αλ := min(

¯
α, λ)) 

 

|
¯
e(t)| ≤ |ε(ti) − β(ti)|e

−.α(t−ti)
+ Re

−.αλ(t−.t0)
+ ∏βt,.t0¯∏. (27) 

 



A novel design in output tracing for nonlinear systems via the first and second time sliding ….. 

DOI: 10.9790/1676-110401119127                                     www.iosrjournals.org                                   124 | Page 

Reminding that ε0= βU+ 
¯
e0+ e

0
Fthen |ε0| ≤ |βU| +|

¯
e0| + |e

0
F|. Now, applying Lemma 1 to (20), considering

¯
t0:= 

¯
teand ML(s) = km/(s + am) (for simplicity), and 

from (22) one has ∀t, tksuch that (tM> t ≥ tk≥ 
¯
te), 

 

|ε0(t)| ≤ (|ε0(tk)| + |βU(tk)|)e
−am(t−tk)

+ 

+ (2Ra
e.λa.te )−.λat

+ 2∏(βU)t,.t
_

e∏, (28) 

where¯λa= min{am, λa}. Note that, according to Lemma 1, 

(28) is valid for the modulation function f(t) given in (9).Consider the available signal 

 

βU
¯
= 2k

¯
*τWβ(s) *f(t)                                                                                  (29) 

whereτWβ(s) is a first order approximation filter (FOAF,[19]) for the transfer function ML(s) [1 − F(τs)] 

F
−1

(τs).Note that, from (21), (18) and (9), one has βU(t) ≤  βU
¯
(t) 

(∀t €[0, tM)). Let 

 

ϕk(t) := (|ε0(tk)| + βU¯ (tk))e
−am(t−tk)

+                                                                (30) 

+ a(k)e
−λct

+ 2∏(  βU¯)t∏, 

 

∀t€ [tk, tM), with λcin (22) and a(k) is any positivemonotonically increasing unbounded sequence. The 

monitoringfunction for n*> 1 ϕmis defined by 

ϕm(t) := ϕk(t) , ∀t €[tk, tk+1) ∁[0, tM) .                                                              (31) 

 

Note that ϕmis discontinuous in t. The switching time tkfor u from u
−
to u

+
(or u

+
to u

−
) is well-defined by: 

tk+1 := [ min{t >tk: |ε0(t)| = ϕk(t)}, if it exists ,                                         (32) 

tM, otherwise , 

 

where k ≥ 1, t0:= 0 and t1 := te
¯
. For convenience, ϕ0:=0, ∀t €[t0, t1). The following proposition follows 

directlyfrom the definition of the monitoring function ϕm, in (31). 

Proposition 1: Let k ≥ 1 be the largest switching indexof the monitoring function (31), such that tk€[0, tM), 

thenthe auxiliary error ε0(t) is bounded by 

 

|ε0(t)| ≤ ϕm(t), ∀t € [t1, tM) . (33) 

 

V. Dynamic stability of sliding mode 

Now we are going to analyze the stability of system path properties that are bounded to 0  manifold and 

under the extra situation and using that, determine a suitable criterion for the selection of design matrix D.  

(G1−G2D)eε1 +εc= G2Hv                                                                                                                                (34) 

The below equivalent dynamic will be obtained: 

eε1 = E1eε1 +E2eε2 

     = (E1−E2 (D+H(G2H)
−1

(G1−G2D)) )eε1                                                      (35) 

   − E2H(G2H)
−1

εc=Meε1 −E2H(G2H)
−1

εc 

It describes the system movement in sliding mode situations that 0  and 0e e   simultaneously. The 

last term of input is bounded constantly that converges to zero asymptotically which doesn’t affect the 

asymptotic stability. This depends on D and H matrices for the below matrix from 22.  

M= E1−E2 (D+H(G2H)
−1

(G1−G2D))                                                          (36) 

Rewrite the relation 23 as below: 

M= E1−E2H(G2H)
−1

G1+E2 (H(G2H)
−1

G2−I)
D
(37) 

Let’s consider another assumption. 

Assumption 5: can find matrix H so the below matrices create a controllable pair.  

 

E1−E2H(G2H)
−1

G
1
  and E2 (H(G2H)

−1
G2−I) 

Considering the upper assumption, it could be resulted that designed matrix D can be chosen randomly for the 

putting of especial amount of matrix M in relation 24. It must be mentioned that assumption 5 is necessary but 

isn’t enough. But in this way the M range couldn’t be assigned.  

 

VI. Simulation Results 
The suggested algorithm usefulness is revealed by the simulation. A non-minimum 5 order system 

MIMO phase is considered, stimulated by two harmonic signal and the system is solved using the below. 



A novel design in output tracing for nonlinear systems via the first and second time sliding ….. 

DOI: 10.9790/1676-110401119127                                     www.iosrjournals.org                                   125 | Page 

This section presents an illustrative simulation examplewhich highlights the performance of the proposed 

controlscheme for a nonlinear plant with relative degree n*= 3. 

Example 1: Consider an open-loop unstable plant withtransfer function given by:  

  

Gp(s)=

1

 𝑠+2  𝑠+1 (𝑠−1)
,  

Beingcontrolled by the VS-MRAC controller of Figure 1 andunder the action of a nonlinear input disturbance 

de(y, t) =y
2
+ sqw(5t), where sqw denotes a unit square wave. Thereference model is M(s) =

4

 𝑠+2 3
and the linear 

lead filteris given in (17) with L(s) = (s + 2)
2
and τ = 

0.01. Themonitoring function is obtained from (31) with a(k) = k+1and ¯λc= 0.5. The plant initial conditions are 

y(0) = 2,y˙(0) = 0 and y‥(0) = 2 and the feedback is positive at t = 0 

(wrong control direction). 

 

Figure 2 corresponds to a simulation result when thereference signal is a sinusoid of amplitude 1 and 

frequency1 rad/s. The convergence of the plant output signal to the model reference output is clear. Figure 3 (a) 

shows that justone switching in the control sign was need (first jump ofϕmwhen it meets ˜ε0). After that, the 

control direction is correctly identified and the auxiliary error ˜ε0, as well as thetracking error, vanish in finite 

time. Note that the seconddiscontinuous-like change of ϕmis not due to a changebetween u
+
and u

−
. It is due to 

the ∏(  βU
¯
)t∏term in (30).led to quite reasonable transient behavior in our simulationsin contrast to the 

Nussbaum gain approach. 

 

Fig2- First output vector 1 (in complete scale) 

 

Fig 3- First output vector 1 (maximized) 
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The figures 2 to 4 show the performance, high accuracy and authenticity of controller output detection. 

Output profile discontinuity affects the both ESSC filter and internal dynamic detection (see figure 5). Finally 

the figures 6 show the assessment of sliding variable boundary layer for outer loop . 

 

VII. Conclusion 

The outer control detection was solved for a set of nonlinear non-minimum phase systems, using the 

fist/second order hybrid method of sliding mode.Despite of using the detector in present situations, the creation 

of one solution that doesn’t need the knowing of Q matrix is under study. This is an important and controversial 

problem that needs the complete review in ESSC method.  

 

Fig4. Second output vector 2 (maximized) 

 

 

Fig5. Internal dynamic


 and SSC filter performance, means the  input and 
ˆ

C output. 
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Fig6. Sliding variable  of internal control loop 
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